
Supporting Maintenance Tasks on Transformational
Code Generation Environments

Victor Guana
Department of Computing Science

University of Alberta
Edmonton AB, T6G 2E8, Canada

http://webdocs.cs.ualberta.ca/~guana
guana@cs.ualberta.ca

Abstract—At the core of model-driven software development,
model-transformation compositions enable automatic generation
of executable artifacts from models. Although the advantages of
transformational software development have been explored by
numerous academics and industry practitioners, adoption of the
paradigm continues to be slow, and limited to specific domains.
The main challenge to adoption is the fact that maintenance
tasks, such as analysis and management of model-transformation
compositions and reflecting code changes to model transforma-
tions, are still largely unsupported by tools. My dissertation aims
at enhancing the field’s understanding around the maintenance
issues in transformational software development, and at support-
ing the tasks involved in the synchronization of evolving system
features with their generation environments. This paper discusses
the three main aspects of the envisioned thesis: (a) complexity
analysis of model-transformation compositions, (b) system feature
localization and tracking in model-transformation compositions,
and (c) refactoring of transformation compositions to improve
their qualities.

Index Terms—software maintenance, transformation composi-
tion, transformation complexity, transformation refactoring.

I. INTRODUCTION

Increased software flexibility, portability and reduction of
coding errors have driven the slow, yet increasing adoption of
transformational software development [1]. A substantial body
of research has already been accumulated on theoretical and
practical aspects of (a) domain-specific modeling languages
(DSMLs), and (b) transformation engines [2][3]. DSMLs
promote the use of models to capture software problem and
solution spaces; transformation engines aim to automatically
translate problem models into solution artifacts, such as code
and deployment descriptors.

The transformational software-development process starts
with a set of domain models, representing the problem,
and concludes with the solution, in the form of executable
code. The process itself consists of a composition of model-
transformation steps; each such step parses the information
contained in its input models and translates it into a set of
output models, which, in turn, are translated further by new
steps, until final executable artifacts are obtained [2]. The main
advantage of this type of transformational software generation
lies in the intermediate models produced, which explicitly
represent different system functional, quality, technical, and
implementation concerns [4]. Intermediate models can be

used for the specification of the software architecture, the
data-distribution strategy, or platform-specific implementation
decisions. Using the same problem specification, different in-
termediate models imply the automatic generation of software
systems with different architectural styles, data organizations,
security requirements, and/or execution platforms.

Maintenance issues, such as (a) analysis of model-
transformation chains and (b) synchronization of evolving soft-
ware features and model-transformation compositions, chal-
lenge the popularity of this software-construction paradigm.
The objective of this thesis is to analyze and develop support
for the maintenance of model-transformation compositions,
in the face of evolving requirements for the to-be-generated
software.

II. MAINTAINING MODEL-TRANSFORMATION
COMPOSITIONS

The maintenance of software-transformation environments
presents two main challenges of our interest: (a) understanding
the nature of the transformation complexity and (b) supporting
the localization of software features in transformation compo-
sitions.

A. Model-Transformation Composition Complexity

As models and model transformations become first-class
entities of the software-construction process, we need to con-
sider how software qualities, such as modularity and cohesion,
can also be applied to model transformations to indicate
how “good” the transformational environment is overall [5].
Nowadays, only empirical evaluations are performed to assess
the maintainability of transformational strategies. There is
not yet any systematic support for how model-transformation
compositions should be designed for maintenance purposes,
and the design of modeling languages and transformations is
still an art.

There are two major categories of transformational ap-
proaches: model-to-model, and model-to-text. A model-to-
model transformation contains mapping rules that specify how
an input set of models are mapped into a set of output models
(i.e. source and target models). In rule-based transformation
languages such as ATL[6], RubyTL[7], or ETL[8], each map-
ping is specified with a transformation rule. On the other

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Doctoral Symposium

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1369



hand, model-to-text transformations are usually implemented
as modules of metacode templates and expansion rules in
languages such as EGL[8] and Acceleo [9]. Expansion rules
select and print string patterns that map source-model elements
to target code, or simply text syntaxes such as XML.

Multiple mappings may be implemented in a single trans-
formation rule set or module. Languages like ATL and ETL
provide different execution semantics for rule inheritance and
context-dependent execution behaviors. As in object oriented
programming, rich language semantics make the design and
maintenance of transformational generations a complex pro-
cess, involving a substantial cognitive challenge for develop-
ers.

Transformation modules can be composed in order to
accomplish complex tasks, with an internal or an external
composition [10]. External composition allows the integration
of transformation scripts developed using (potentially) mul-
tiple transformation languages. They are usually specified in
a pipeline architecture, where the output of a transformation
serves as the input for the next one, resulting in a model-
transformation chain of model-to-model and model-to-text
transformations[2]. Internal composition is characterized by
the “compilation” of multiple transformation rules into a
single transformation unit. It is often implemented using a
single transformation language that can be executed as a
whole [5][10]. From the developer’s perspective, using an
external composition implies that information about models
and rule-execution semantics is only accessible inside each
shackle of the transformation chain. With internal composition,
transformation semantics allow scope access to the entire
transformational process from any point of its execution.

Automating the complexity analysis of model-
transformation compositions will ease the identification
of transformation chains bad smells. Particularly, we pursue
the detection of transformation composition anti-patterns that
might cause the backward integration of code refinements
and feature modifications expensive in maintenance terms.

B. Feature Localization and Tracking

Once code is generated, processes such as user and ac-
ceptance testing may necessitate that the original problem
code solution be modified. Modifications may include code
refactoring for design improvement, performance tuning for
mission-critical systems, energy-consumption optimization for
mobile applications, and bug fixes, among others. In order
to synchronize the transformational environment (including
models and transformation steps) with the changed require-
ments and code, refinements have to be backwardly integrated
throughout the code-generation environment.

In a backward integration scenario, modifications such as
the creation or deletion of elements in the DSMLs to capture
uncovered or residual information, or the logic adaptation
in transformation modules to map modified or new model
elements, have to be performed in order to comply with new
code refinements. This process is iterative and part of the
natural evolution of the transformational software-construction

paradigm [11]. Given the different architectures in which
transformations can be composed, and the numerous models
that pivot the code-generation process, tracking the origins
of a system’s feature through model-to-model and model-
to-text transformations can potentially be a very challenging
task. Usually, the semantic and syntactic origins of a gener-
ated feature are scattered among different pivot models and
transformation modules. Therefore, its manual identification
is either infeasible, or at the very least, error prone for large
and complex generation processes.

Automatic feature localization and tracking in
transformation-based generations will reduce maintenance
efforts for tasks that involve code refinements, and feature
evolution. It will support developers on the identification of
model, and model transformation compositions hotspots that
have to be modified in order to integrate new requirements to
an existing generation environment.

III. BACKGROUND AND OBJECTIVES

The overall objective of this research agenda is to develop
tools for mitigating the challenges around the maintenance
of transformational code-generation environments, focusing on
model and model-transformation analysis and maintenance. To
that end, we focus our research around three objectives: feature
localization and traceability through models and transforma-
tions, cognitively valid complexity assessment of models and
model transformations, and refactoring of rule-based model
transformations.

A. Feature Localization and Traceability

Code changes that have to be backwards synchronized with
the model-transformation composition that led to its generation
are typically motivated by features that are required to be
changed (e.g. bug fixes, performance improvements, function-
ality extensions), or to be deleted (e.g. in case of unused
functionalities), or to be created (e.g. new hardware adap-
tations, or user requirements) [12]. There are two important
challenges that we want to address in this process. First, we
plan to support the identification of the features implemented
by the manually modified code segments. Second, we intend
to trace these features throughout the models, and model-
transformations, involved in the transformation composition
that generated the original code in the first place, in order to
highlight hotspots where transformation rules, models, or even
DSMLs have to evolved to support the manual modifications.

In [13], a survey of model-driven engineering traceability
analyzes how current traceability techniques represent the
unit of information to be traced, and how the traceability
processes are executed (e.g. using auxiliary models, extending
models with trace information, or using annotations). Existing
techniques trace individual model concepts looking for one-
to-one mappings in transformation rules. Usually they are not,
or only partially, supported by automatic tools. Furthermore,
they do not deal with traceability software features in trans-
formation chains that involve both model-to-model, and to
model-to-text transformations. In our approach, we intend to

1370



make information about the interdependencies of features and
transformation paths between models visible to maintainers.
This information will enable developers to isolate the to-be-
changed transformation elements and ease their decision mak-
ing on how to modify the impacted assets. We are currently
exploring two mechanisms to tackle feature localization and
traceability challenges in transformation compositions: formal
concept analysis classifications based on lattice theory [14],
and static analysis combined with symbolic execution [15] of
generated code sources.

B. Cognitively Valid Complexity Analysis of Model-
Transformation Compositions

Since maintenance requests originate from the need for
code refinements and changes to the software architectures,
we believe that the complexity analysis of transformation
compositions should focus on (a) how difficult it is to change
the derivation of a system feature, (b) how scattered the trans-
formation rules, relating to a specific feature, are across the
transformational-generation environment, and (c) how rules
can be reused and composed for the derivation of similar
feature structures.

Fenton and Pfleeger [16] understand four types of soft-
ware complexity: problem, algorithmic, structural and cogni-
tive complexity. To the best of our knowledge, all existing
transformation-complexity measurement proposals focus on
understanding the structural complexity of single transforma-
tion modules. van Amstel et al. presented perhaps the most im-
portant contribution on this matter [17]. Authors quantify the
structural complexity of individual transformation units with
numerous metrics that involve the syntactical characteristics
of a transformation module.

Opportunities remain open for compositional-complexity
measures that estimate how difficult it is to maintain a
generated feature across a model-transformation execution.
Properties, such as how many rules are involved in the
generation of a system feature, or how these rules are scat-
tered across multiple modules of the transformation composi-
tion, may indicate “bad smells” that impact how developers
understand and navigate through generation hotspots. Such
smells will point to the creation, deletion, or modification of
transformational structures that collaborate for the derivation
of a single software feature. We envision the development
of a suite of compositional-complexity metrics to evaluate
how transformation compositions manipulate the information
along a model transformation process. Although they include
structural elements of transformation modules to understand
their complexity, they will be mainly driven by the cognitive
challenges that maintainers face while synchronizing evolving
features with their generation environments.

C. Refactoring of Model-Transformation Compositions

Based on the analysis of transformation-composition com-
plexity and the feature localization and tracking capabilities, I
will pursue the creation of a tool to automate the identification
of opportunities for, and the implementation of, refactorings

on transformation compositions. These refactorings are in-
tended to ease the maintenance tasks that involve backward
synchronization of software features with their generation
environments.

Gniesser in [18] presents a refactoring conceptual frame-
work for ATL-based transformation rules. The framework
involves the definition of syntactical bad smells such as dupli-
cated transformation code, oversized rules, unused language
features, among others. Wimmer et al. [19] propose a broader
catalog of refactorings for model-to-model transformations
that also includes refactorings for the optimization of OCL
expressions [20]. Both proposals use ATL refinements in order
to test semi-automatic bad smell detection and application of
refactorings.

Current refactoring alternatives pursue the simplification of
the structural complexity in individual transformation modules.
We want to support the automatic detection of bad smells,
and refactoring opportunities of model transformation com-
positions. Based on compositional-complexity measures, and
feature traceability detection simplification, model-to-model
and model-to-text composed transformations can be refac-
tored. Refactoring suggestions could include modularizing
transformation rules according the type of features they help to
generate or, depending on how their execution context relates
with model elements and feature traces, change their design
structure from an external to an internal composition.

IV. PROGRESS THUS FAR

We are currently developing PhyDSL, a physics-based
domain-specific language and a transformational generative
environment for physics-based games. Currently, we are using
PhyDSL and its code-generation environment to construct
customizable, and cost-effective tablet-games for the rehabil-
itation of visuomotor conditions suffered after brain injuries.
Using PhyDSL we can generate a variety of games, including,
but not limited to, avoid object collisions, solve the maze, and
capture the flag. The PhyDSL generation process is divided in
three independent model-transformation chains that start with
the same game specific language: Physics Rules (i.e. how the
game world is affected by forces like gravity, or friction),
Game Navigation (i.e. how different screens represent game
information), and Game Logic (i.e. how scoring rules, and the
interaction between game actors are defined).

As a concrete example of the challenges involved in the
maintenance of model-generated code, let us consider our re-
cent experience with the implementation of two new features:
first, to support the submission of game scores to a remote
server, and second, to optimize the rendering of visual objects
to reduce the game-energy consumption. These features re-
quired the implementation of a whole new set of classes that
collaborate to support their execution. Additionally, we had to
implement a set of refinements to extend the existing elements
and weave the new feature behaviors. For example, game
screens should now provide the score submission buttons,
and login fields; the scoring manager should keep track of
an authentication certificate, and the game canvas should use

1371



additional rotation a position solvers for the rendering of game
objects. As expected, these refinements cut across existing
features generated by the three generation levels.

In order to reuse these feature in future game generations,
we backwardly integrated the new code and respective re-
finements to the model-based generation process (i.e. model
compositions conformed by model-to-model and model-to-text
transformations). We, first, listed all the features that were
impacted by the refinements. Next, we traced the models
and transformation rules that collaborate for their generation.
Third, we identified the transformation modules that required
modifications. Next, we identified candidate models that could
capture the newly required information (e.g. add or remove
model concepts and attributes). Finally, we integrated new
transformation logic to include new model structures and
embedded design decisions. We found this process quite
difficult, in spite of having been the original developers of
PhyDSL and its environment. The transformations and models
required for the generation of a single software feature were
scattered among different transformation modules and gener-
ation chains. Moreover, since the existing features were not
isolated, transformation rules and models became redundant
and less cohesive. For example, we extended transformations
in both Game Navigation and Game Logics generation chains
to include the remote scoring generation artifacts. In both
levels, we duplicated model elements and transformation logic.
This duplication was caused by the fact that the composition
design did not provide access to required model concepts and
transformation rules. Among many others, these maintenance
issues revealed that if we modularize the generation process
to leverage the trace and extension of software features, our
feature addition and modification would be cognitively easier
to understand, and therefore, faster and sustainable for future
feature extensions.

V. EVALUATION PLAN

My evaluation strategy is divided in three phases, that
involve controlled empirical studies with developers using the
tools I plan to develop. First, I will study the correlation
between (existing and newly designed) metrics of model-
transformation compositions and the cognitive difficulty faced
by developers, in a variety of maintenance tasks of model-
generated code. Second, I will evaluate the precision and
recall of my semantic and syntactic feature-tracking methods
on a given model-transformation composition, including both
model-to-model and model-to-text transformation modules.
This model-transformation environment will most likely be
PhyDSL. At the same time, I plan to evaluate how exactly my
feature recovery-location tools reduces the maintenance effort
required by the developers. Finally, I will conduct empirical
studies with developers to compare the maintenance costs
of complex transformation compositions and their refactored
counterparts, when synchronizing feature and code refine-
ments, in order to evaluate the effectiveness of my model-
transformation refactoring toolkit.

VI. CONCLUSIONS

In my dissertation I plan to analyze the complexity of
model-transformation compositions and to develop meth-
ods and tools for measuring this complexity, support-
ing the location of code features throughout the model-
transformation composition that produced it, and refactoring
model-transformation compositions to improve their qualities.
My work will be driven by systematic empirical studies to
support and analyse the benefits of the proposed tools and
methodologies, towards increasing the field’s capacity for
maintaining code generated through model transformations.

VII. ACKNOWLEDGEMENTS

I would like to thank my PhD supervisor, Prof. Eleni
Stroulia for her helpful comments and suggestions.

REFERENCES

[1] S. Mellor, T. Clark, and T. Futagami, “Model-driven development: guest
editors’ introduction.” IEEE software, vol. 20, no. 5, pp. 14–18, 2003.

[2] K. Czarnecki, “Generative programming: Methods, techniques, and
applications tutorial abstract,” Software Reuse: Methods, Techniques, and
Tools, pp. 477–503, 2002.

[3] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in 2007 Future of Software Engineering.
IEEE Computer Society, 2007, pp. 37–54.

[4] B. Vanhooff, D. Ayed, and Y. Berbers, “A framework for transformation
chain development processes,” in Proceedings of the ECMDA Compo-
sition of Model Transformations Workshop, 2006, pp. 3–8.

[5] D. Wagelaar, M. Tisi, J. Cabot, and F. Jouault, “Towards a general
composition semantics for rule-based model transformation,” Model
Driven Engineering Languages and Systems, pp. 623–637, 2011.

[6] F. Jouault and I. Kurtev, “Transforming models with atl,” in Satellite
Events at the MoDELS 2005 Conference. Springer, pp. 128–138.

[7] J. Cuadrado, J. Molina, and M. Tortosa, “Rubytl: A practical, extensible
transformation language,” in Model Driven Architecture–Foundations
and Applications. Springer, 2006, pp. 158–172.

[8] D. Kolovos, R. Paige, and F. Polack, “The epsilon transformation
language,” Theory and Practice of Model Transformations, 2008.

[9] J. Musset, É. Juliot, S. Lacrampe, W. Piers, C. Brun, L. Goubet,
Y. Lussaud, and F. Allilaire, “Acceleo user guide,” 2006.

[10] A. Kleppe, “First european workshop on composition of model trans-
formations - cmt 2006,” Technical Report TR-CTIT-06-34, 2006.

[11] D. Hearnden, M. Lawley, and K. Raymond, “Incremental model trans-
formation for the evolution of model-driven systems,” Model Driven
Engineering Languages and Systems, pp. 321–335, 2006.

[12] K. Bennett and V. Rajlich, “Software maintenance and evolution: a
roadmap,” in Proceedings of the Conference on the Future of Software
Engineering. ACM, 2000, pp. 73–87.

[13] I. Galvao and A. Goknil, “Survey of traceability approaches in model-
driven engineering,” in 11th Enterprise Distributed Object Computing
Conference, 2007. EDOC 2007. IEEE, 2007, pp. 313–313.

[14] B. Ganter, R. Wille, and R. Wille, Formal concept analysis. Springer
Berlin, 1999.

[15] J. King, “Symbolic execution and program testing,” Communications of
the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[16] N. Fenton and S. Pfleeger, Software metrics: a rigorous and practical
approach. PWS Publishing Co., 1998.

[17] M. van Amstel and M. van den Brand, “Quality assessment of atl model
transformations using metrics,” in Proceedings of the 2nd International
Workshop on Model Transformation with ATL), Malaga, Spain, 2010.

[18] P. Gniesser, Refactoring Support for ATL-based Model Transformations.
MSc Thesis, Faculty of Informatics - Vienna University of Technology,
2012.

[19] M. Wimmer, S. Martı́nez, F. Jouault, J. Cabot et al., “A catalogue of
refactorings for model-to-model transformations,” The Journal of Object
Technology, vol. 11, no. 2, pp. 21–40, 2012.

[20] J. Warmer and A. Kleppe, The object constraint language: getting your
models ready for MDA. Addison-Wesley Professional, 2003.

1372


